7 fellows & 7 thoughts about Moore’s Law – “The Internet of Power also benefits from Moore’s Law”
It may sound strange, but striving to achieve smaller dimensions with Moore’s Law is an important enabler for producing increasingly better solar cells, with a more elaborate technology toolbox (including ALD, epitaxy, etc.). Improved process steps are constantly being developed to achieve these small transistor dimensions (for growing material layers or to etch away structures) and we can also use some of them to produce the latest solar cells and batteries.
For example, there’s atomic layer deposition (ALD), a technology that was developed with the switching of thermal oxides to high-k dielectrics in transistors. The record efficiencies that we achieve with our nPERT cells are based on ALD layers of aluminum oxide, offering more efficient passivation than traditional thermal oxides. The same technology is used for thin-film PV cells, where they allow for better window layers.
Another example is nanotexturing, which is used for producing the uppermost contacts of a solar cell and applying an antireflective coating. It will certainly be possible to use the knowledge of nano-imprint lithography in this area. Technologies such as ALD and molecular layer CVD are also very important for 3D thin-film batteries.
Moore’s Law has always been focused on increasing the functionality per surface area. This can be achieved by making transistors smaller. However, now that the complexity of the technology is becoming too great, researchers are looking for solutions in the third dimension. Yet thanks to 3D stacking, the functionality per surface area can still be increased without having to scale.
This 3D approach has other benefits, too: it is becoming possible to stack other technologies compactly on top of one another to produce smart systems. Sensors are a good example of this. And precisely these autonomous sensor systems will form the foundation of the future Internet of Power. Our current unidirectional power grid – from plant to consumer – will be replaced by a bidirectional system.
Energy will be generated in a decentralized way (solar panels, wind turbines, biomass, etc.); houses and commercial businesses will have incoming and outgoing energy flows and increasingly be able to store energy. The situation is becoming complex and will be based on sensors, gathering data in the cloud, interpreting data and carrying out the right actions based on that data. This means that Moore’s Law is much more than an enabler for cheaper electronics. It also enables a greener future!
About the author
Dr. Jozef Poortmans received his degree in electronic engineering from the Catholic University of Leuven, Belgium, in 1985. He joined the newly built imec in Leuven where he worked on laser recrystallization of polysilicon and a-Si for SOI-applications and thin-film transistors. In 1988 he started his PhD study on strained SiGe-layers. Both the deposition and the use of these SiGe-alloys within the base of a heterojunction bipolar transistor were investigated in the frame of this study. He received his PhD degree in June 1993. Afterwards he joined the photovoltaics group, where he became responsible for the group advanced solar cells. Within this frame he started up the activity about thin-film crystalline Si solar cells at imec and he has been coordinating several European Projects in this domain during the 4th and 5th European Framework Program. In 2003, he became cluster coordinator of European projects in the latter domain. In 1998 he initiated the activity on organic solar cells at imec which was complemented with an activity on III-V solar cells started in 2000. At the moment, he is scientific director photovoltaics at imec. Dr. Poortmans has authored or co-authored nearly 350 papers that have been published in Conference Proceedings and technical journals. He has written 4 book articles, two of which are dealing with the properties and applications of strained SiGe-alloys whereas the other two are in the field of photovoltaics. He is Scientific Editor of a Book on thin-film solar cells and has been acting as co-organizer of several thin-film solar cell symposia in the frame of the E-MRS. As a Board Member of EUREC agency he is involved in the preparation of the strategic research agenda for photovoltaic solar energy technology of the European PV technology platform. He was general chairman of the 21st European photovoltaic solar energy conference & exhibition.
Jef Poortmans, fellow and PV program director at imec
Contenuti correlati
-
Imec e Cadence collaborano per il tape-out del primo chip di test a 3nm
imec, il centro di ricerca e innovazione leader a livello mondiale nel settore della nanoelettronica e delle tecnologie digitali, e Cadence Design Systems hanno annunciato che la loro lunga e consolidata collaborazione ha portato al primo tape-out...
-
7 fellows & 7 thoughts about Moore’s Law – ‘Moore’s Law is primarily an economic law, but given some expansion it can also be applied to thin-film electronics’
Most people know Moore’s Law as ‘the number of transistors on a chip doubles every two years’. That interpretation was the consequence of economic considerations. Moore predicted that ‘the number of transistors on a chip will rise...
-
7 fellows & 7 thoughts about Moore’s Law – ‘Ten years from now, CMOS will seem as old-fashioned as vacuum tubes’
I’m very optimistic about the continuation of Moore’s Law. But in saying that, I’m speaking about Moore’s Law purely as an economic law. I believe we’ll be able to offer increasing amounts of functionality at lower and...
-
7 fellows & 7 thoughts about Moore’s Law – “We must teach chips to feel pain”
When I was a doctorate student in the 1980s there was lots of wild speculation about Moore’s Law: give it another 10 years and transistors will stop getting smaller, they were saying back then. But in the...
-
7 fellows & 7 thoughts about Moore’s Law – “Wearable sensors also benefit from scaling according to Moore’s Law”
My particular area of research has nothing to do directly with Moore’s Law and advanced chip technologies. We currently use 180-nanometer technology for our health sensors. So, at first sight, you could say that in technology terms,...
-
7 fellows & 7 thoughts about Moore’s Law – “Moore’s Law will continue for a long time yet, but we will have to scale in a more ‘specialized’ way”
Moore’s Law is not a law of dimensions, but of economics. The law states that electronic systems will become increasingly smaller and increasingly cheaper and/or acquire more functions. The best example of this is our smartphone. In...
-
7 fellows & 7 thoughts about Moore’s Law – “Design techniques are helping to keep Moore’s Law alive longer”
Moore’s Law means that electronic products can constantly be produced more cheaply, faster and more economically. Down to 45 nm, this was due mainly to the technology that made it possible to reduce the size of transistors....
-
IMEC e iMinds: report finale del progetto CoPlaSM
IMEC, iMinds e i loro partner dell’iMinds ICON-project CoPlaSM hanno presentato, nel corso della European Utility Week tenutasi dal 4 al 6 novembre scorsi ad Amsterdam, i risultati del progetto biennale (avviato nel gennaio 2013) per realizzare e convalidare...
-
Imec e Omron: vibrazioni in energia elettrica
La collaborazione tra Imec e Omron ha generato un chip per raccolta di energia vibrazionale, in grado di alimentare i sensori in luoghi difficili da raggiungere. Il prototipo pesa solo 15,4 grammi per fornire corrente continua ai...
-
Un’elettronica sempre più “flessibile”
Fino ad alcuni anni fa l’impiego dei circuiti stampati flessibili era ristretto ad applicazioni piuttosto limitate, ma ora ci si sta rendendo conto che in talune applicazioni possono essere estremamente utili vantaggi quali il peso ridotto, l’adattabilità...