Alimentazione: alcuni suggerimenti (parte 12): Ottimizzazione dell’efficienza degli alimentatori

Dalla rivista:
Elettronica Oggi

 
Pubblicato il 23 giugno 2011

In questo articolo illustreremo come sia possibile utilizzare la stessa serie per ottimizzare l’efficienza dell’alimentatore per una particolare corrente di carico. In Alimentazione: alcuni suggerimenti-parte 11, abbiamo proposto di calcolare le perdite di potenza in funzione della corrente di uscita in base alla seguente formula:

formula 1

Il passo successivo consiste nell’inserire questa semplice espressione nell’equazione per il calcolo dell’efficienza:

formula 2

Infine si può ottimizzare l’efficienza in base alla corrente di uscita (lasciamo la dimostrazione alla volontà del lettore). L’ottimizzazione produce un interessante risultato, ossia che l’efficienza è massima quando la corrente di uscita è uguale al valore fornito dalla seguente espressione:

formula 3

Anzitutto si nota che il termine a1 non influisce sul valore di corrente che massimizza l’efficienza. Ciò perché è correlato a perdite proporzionali alla corrente di uscita, come quelle che si generano nelle giunzioni dei diodi. Quindi, a mano a mano che aumenta la corrente di uscita, queste perdite e la potenza di uscita aumentano proporzionalmente e non hanno alcun effetto sull’efficienza. In secondo luogo, si osserva che l’efficienza è massima quando le perdite costanti sono uguali alle perdite per conduzione.

Ciò implica che deve essere possibile ottimizzare l’efficienza, dato che si ha il controllo sui componenti da cui dipendono i valori di a0 e a2. Ovviamente, per migliorare l’efficienza occorre anche cercare di ridurre il valore di a1. Poiché i guadagni ottenuti operando su questo termine saranno uguali per tutti i valori della corrente di carico, non si otterrà un’ottimizzazione, come invece è possibile con gli altri termini. L’obiettivo, per quanto riguarda a1, è minimizzarlo mirando a contenere i costi.

Table_01

Tab. 1 – Coefficienti di perdita e perdite corrispondenti nell’alimentatore

La tabella 1 presenta un riepilogo dei vari termini da cui dipendono le perdite in un alimentatore e i coefficienti corrispondenti. Ci si può così fare un’idea di alcuni dei compromessi da raggiungere per massimizzare l’efficienza dell’alimentatore. Ad esempio, la scelta della resistenza allo stato On del MOSFET di potenza influisce sulle perdite nel comando di gate, su quelle dovute a COSS e sulle possibili perdite nello snubber: un valore più basso di tale resistenza comporta un aumento inverso di questi tre fattori. Quindi è possibile agire su a0 e a2 scegliendo opportunamente il MOSFET.

 

Nella fase successiva dei calcoli, si sostituisce il valore della corrente ottimale nell’equazione dell’efficienza e si ottiene così l’espressione che fornisce l’efficienza massima:

formula 4

In questa equazione è necessario minimizzare gli ultimi due termini per massimizzare l’efficienza. Per quanto riguarda a1, occorre semplicemente ridurlo, mentre l’ultimo termine richiede di effettuare delle scelte: supponendo che la potenza in COSS e quella nel comando di gate di un MOSFET dipendano dalla relativa area e che la resistenza allo stato On sia inversamente proporzionale all’area stessa, è possibile selezionare l’area (e la resistenza) ottimale. La figura 1 presenta i risultati di un’ottimizzazione dell’area del die.
Quando l’area è piccola, la resistenza allo stato On del MOSFET diventa il fattore limitante dell’efficienza.

Figure_01

Fig. 1 – Regolando l’area del die del MOSFET si minimizzano le perdite di potenza a pieno carico

All’aumentare dell’area, aumentano le perdite nel comando di gate e in COSS, e a un certo punto diventano il fattore dominante. L’intervallo del minimo è relativamente ampio, offrendo al progettista una certa flessibilità nel bilanciare il costo del MOSFET rispetto alla riduzione delle perdite conseguibile. Il minimo viene raggiunto quando le perdite nel comando sono uguali alle perdite per conduzione.

 

La figura 2 mostra l’andamento dell’efficienza per tre possibili progetti basati sul punto ottimale illustrato nella figura 1. Sono presentate aree del die normalizzate ai valori 1, 2 e 3. A bassi carichi, l’efficienza dell’area più grande è penalizzata dall’aumento delle perdite nel comando, mentre a carichi più alti l’area più piccola risente dell’aumento delle perdite per conduzione.

Figure_02

Fig. 2 – L’efficienza massima viene raggiunta prima della massima corrente nominale

 

Il prossimo argomento della rubrica saranno le limitazioni associate alla riduzione delle dimensioni dei componenti magnetici all’aumentare della frequenza di commutazione.

Per leggere numeri precedenti della rubrica “Suggerimenti sull’alimentazione” di Robert Kollman: www.eo-web.it/webexclusive
Per ulteriori informazioni su questa e altre soluzioni per gli alimentatori, visitare: www.ti.com/power-ca
Per contattare Robert Kollman: powertips@list.ti.com

Robert Kollman, Texas Instruments



Contenuti correlati

  • TI
    Il nuovo centro di distribuzione dei prodotti di TI

    Texas Instruments (TI) ha aperto un nuovo centro per la distribuzione dei prodotti a Dreieich, nei pressi di Francoforte. Il nuovo impianto, che ha un’estensione di 9.000 metri quadrati, dispone di nuove funzionalità di automazione. Può infatti...

  • Murata
    Murata amplia la sua offerta di alimentatori

    Murata ha aggiunto il modello PQC600 alla sua gamma di alimentatori AC/DC di tipo open frame. Il produttore precisa che PQC600 utilizza un trasformatore sviluppato “su misura” da MPS (Murata Power Solutions) e l’intero progetto è ottimizzato...

  • TRACO
    TRACO estende la serie di alimentatori TXN

    TRACO ha annunciato l’estensione della sua offerta di alimentatori della serie TXN con diversi nuovi modelli caratterizzati da livelli di potenza tra 35 e 800 watt. Questi alimentatori CA/CC, ospitati in case metallico, sono progettati per applicazioni...

  • Progettazione di un circuito di precarica attiva con condensatore DC-Link ad alta tensione

    Questo articolo presenta il processo di progettazione necessario per calcolare gli adeguati valori dei componenti che contribuiscono a ottenere il profilo di carica desiderato Leggi l’articolo completo su EO 521

  • I miglioramenti nella tecnologia RFID danno origine a nuove applicazioni

    L’identificazione a radiofrequenza (RFID) è una tecnologia consolidata che viene impiegata da molti anni, con l’introduzione dei primi esempi di transponder RF passivi che risale agli anni 70. Probabilmente la usate tutti i giorni senza accorgervene, ma...

  • Vox Power
    Vox Power annuncia la serie EIRE300

    Vox Power ha presentato la serie di alimentatori CA/CC EIRE300, progettati per applicazioni mediche e ITE. EIRE300 eroga 300 watt, con uscita di picco di 375 watt, e offre un’efficienza fino al 95%. Tra le principali caratteristiche...

  • TI
    TI presenta i suoi nuovi PLD

    Texas Instruments (TI) ha presentato nuovi dispositivi a logica programmabile (PLD) che permettono di semplificare e velocizzare lo sviluppo di progetti di dispositivi logici per qualsiasi tipo di applicazione. È possibile integrare fino a 40 combinazioni e...

  • TTI
    Le soluzioni di alimentazione rack di Mean Well da TTI

    TTI IP&E – Europe fornisce i componenti di alimentazione per armadi rack di Mean Well come per esempio il modello DHP-1UT-B(HV). Questo prodotto fornisce un’alimentazione affidabile in un design modulare ed è particolarmente interessante per applicazioni come...

  • Come migliorare la sicurezza negli inverter di trazione dei veicoli elettrici

    I progettisti di veicoli elettrici possono aumentare la sicurezza e l’affidabilità dei sistemi a inverter di trazione monitorando la soglia di tensione del gate Leggi l’articolo completo su EO520

  • TRACO POWER
    I nuovi alimentatori di TRACO POWER

    TRACO POWER ha introdotto la serie di alimentatori TXO per rispondere alle esigenze di applicazioni industriali sensibili ai costi. Si tratta di tre serie di alimentatori CA/CC di tipo open frame, con potenze comprese fra 45 e...

Scopri le novità scelte per te x