Minacce alla sicurezza informatica degli endpoint che utilizzano l’intelligenza artificiale
Dalla rivista:
Elettronica Oggi
Sebbene ancora nelle fasi iniziali, l’intelligenza artificiale (AI) a bordo degli endpoint (o TinyML) si sta lentamente diffondendo nel settore industriale e sempre più aziende stanno integrando l’intelligenza artificiale nei propri sistemi, ad esempio per la manutenzione predittiva nelle fabbriche o per l’individuazione di parole chiave nei dispositivi elettronici consumer. Ma con l’aggiunta di un componente AI in un sistema IoT, è necessario prendere in considerazione nuove misure di sicurezza
Leggi l’articolo completo su EO 508
Eldar Sido, Product Marketing Specialist & IoT and Infrastructure Business Unit - Renesas Electronics
Contenuti correlati
-
Sei nuovi acceleratori per progetti di ML da Cloudera
Cloudera ha annunciato sei nuovi acceleratori per progetti di ML (AMP). Le AMP sono progetti end-to-end basati sull’apprendimento automatico (ML) che possono essere distribuiti direttamente dalla piattaforma Cloudera. Gli acceleratori sono stati concepiti per ridurre il time-to-value...
-
L’AI sul posto di lavoro: il buono, il cattivo e l’algoritmico
Se da un lato l’AI può liberarci da compiti noiosi e persino eliminare l’errore umano, dall’altro è fondamentale ricordare le sue lacune e le capacità uniche messe in campo dagli esseri umani Di Fabio Buccigrossi, Country Manager...
-
Artificial Intelligence: scudo e spada nella cybersecurity moderna
Daniel Rapp, Group Vice President, AI/ML, Proofpoint, riassume le opportunità e le sfide che la rapida diffusione dell’AI sta portando alle aziende in tema di sicurezza cyber. L’intelligenza artificiale è sulla bocca di tutti, e il mondo...
-
Tempi di remediation azzerati e massima sicurezza: la rivoluzione dell’automazione e dell’AI
L’automazione non toglie agli sviluppatori la responsabilità di una codifica sicura, bensì li supporta evidenziando errori o lacune in fase iniziale e suggerendo soluzioni Leggi l’articolo completo su EMB93
-
Visione artificiale e Machine Learning nelle applicazioni dell’Industria 4.0
Questo articolo è una panoramica sulla moderna tecnologia di visione artificiale supportata da funzioni di Intelligenza Artificiale nelle applicazioni dell’Industria 4.0 Leggi l’articolo completo su EO Lighting 35
-
Ripensare l’AI per rivoluzionare i flussi di lavoro
In che modo l’intelligenza artificiale cambierà nel prossimo futuro il modo in cui lavoriamo, innoviamo e creiamo? È stato questo il tema del TOUGHBOOK Innovation Forum, un evento che ha avuto luogo a Stoccolma per approfondire le...
-
Intel porta le sue GPU Arc nelle automobili
Intel è entrata nel segmento delle GPU discrete per applicazioni automotive presentando la sua prima unità dGPU per questo settore. Le GPU sono quelle con architettura Arc e i prodotti inizieranno a essere distribuiti commercialmente nei veicoli...
-
AMD acquisisce ZT Systems e punta sull’AI
AMD ha annunciato la firma di un accordo definitivo per l’acquisizione di ZT Systems, un fornitore di infrastrutture AI per le più grandi aziende di elaborazione hyperscale al mondo. La transazione in contanti e azioni è valutata...
-
Un’analisi di Juniper Networks per l’AI nelle reti
Gli esperti di Juniper Networks hanno riassunto le principali potenzialità delle piattaforme di networking AI native, a seconda del caso d’uso specifico. Le piattaforme di networking AI native, infatti, possono essere utilizzate nell’ambito dell’AI per il networking,...
-
Ripensare l’AI per rivoluzionare i flussi di lavoro
di Ulrika Sturk, Nordics Regional Marketing Manager di Panasonic TOUGHBOOK In che modo l’intelligenza artificiale cambierà nel prossimo futuro il modo in cui lavoriamo, innoviamo e creiamo? È stato questo il tema del recente TOUGHBOOK Innovation Forum,...