senseAI di Lattice: uno stack per aggiunte nuove esperienze di AI alla periferia della rete
La rivoluzione legata all’uso delle tecnologie AI/ML (Artificial Intelligence/Machine Learning) interessa un numero sempre crescente di applicazioni, in particolar modo quelle alla periferia della rete (edge). Un gran numero di dispositivi edge (tra cui videocamere di sicurezza, robot, apparecchiature industriali, PC client e persino giocattoli) ora possono supportare funzionalità IA/ML che offrono strumenti e possibilità di fruizione completamente nuove. Secondo la società di analisi di mercato ABI Research, il mercato dei chipset edge che supportano funzionalità AI “finora è aumentato in misura notevole e si prevede che continuerà a crescere raggiungendo il valore di 71 miliardi di dollari entro il 2024, con un tasso di crescita su base annua del 31% fra il 2019 e il 2024. Il fattore trainante di una crescita così sostenuta è la migrazione dei carichi di lavoro legati ai processi inferenziali tipici dell’AI verso la periferia – particolarmente in alcuni settori (smartphone, domotica, automotive, indossabili e robotica).
Tuttavia, rendere “smart” un dispositivo di computing client aggiunge nuovi problemi nella fase di progettazione del prodotto. AI/ML è una tecnologia emergente e molti OEM non hanno né l’esperienza interna né il tempo necessari per progettare una soluzione AI/ML a aprtire da zero. Poiché gli algoritmi impiegati per addestrare dispositivi di elaborazione client si evolvono rapidamente, gli sviluppatori di applicazioni AI/ML cercano di utilizzare anche soluzioni aggiornabili sul campo. Ma la questione più cruciale per molti di loro è come assicurare le prestazioni di elaborazione necessarie per il funzionamento di un’applicazione AI/ML alla periferia della rete in un dispositivo a batterie.
Per far fronte a questi problemi, sviluppatori e OEM devono poter accedere a soluzioni hardware e software flessibili che permettano di fruire delle nuove esperienza rese possibili grazie all’uso combinato delle tecnologie AI/ML con bassi consumi di potenza. Fin dal 2018, lo stack di soluzioni Lattice sensAI™ ha aiutato i clienti della società ad aggiungere funzionalità IA/ML a prodotti sia nuovi sia esistenti.
La versione più recente (v4.1) dello stack di soluzioni sensAI ora include una road map di progetti di riferimento per offrire esperienze di utilizzo di alto livello grazie a funzionalità AI/ML integrate in dispositivi di computing client come i laptop. La pandemia ha fatto aumentare in maniera esponenziale il numero di persone che usano applicazioni di videoconferenza per rimanere connesse – per ragioni lavorative, sociali e familiari. I progetti di riferimento inclusi nell’ultima versione dello stack sensAI sfruttano i sensori audio e video dei dispositivi client per offrire esperienze di utilizzo a valore aggiunto – avvio quasi istantaneo (“instant-on”), rilevazione della presenza e del livello di attenzione, privacy e videoconferenza – garantendo comunque consumi ridotti per massimizzare l’autonomia della batteria.
Lo stack di soluzioni sensAI v4.1 di Lattice aiuta gli sviluppatori a utilizzare i sensori e le inferenze AI/ML per offrire nuove e migliori modalità di fruizione di dispositivi di computing client.
Gli OEM possono trarne numerosi vantaggi dall’utilizzo di sensAI per aggiungere il supporto AI/ML ai dispositivi loro dispositivi tra cui:
- Aumento fino al 28% dell’autonomia della batteria rispetto a dispositivi client che utilizzano le loro CPU per il funzionamento delle applicazioni IA
- Supporto per effettuare gli aggiornamenti software sul campo, utile per seguire l’evoluzione delle tecnologie legate all’intelligenza artificiale
- Scalabilità per garantire bassi consumi durante l’esecuzione di più applicazioni grazie alla possibilità di trasferire l’elaborazione dei dati AI dalla CPU
- Ampio supporto per i più diffusi sensori e SoC (system-on-chip)
Nelle future versioni dello stack sensAI, Lattice aggiungerà altre funzionalità per ampliare e migliorare la fruizione dei dispositivi di elaborazione client che sfruttano l’AI.
Grazie al supporto per Lattice CertusPro™-NX, la più recente aggiunta alla linea di FPGA Lattice Nexus™, lo stack può anche assicurare sensibili miglioramenti in termini di prestazioni e precisione in tutte quelle applicazioni di rilevazione dei difetti e degli oggetti che richiedono un’estrema precisione, tipiche dei sistemi industriali automatizzati. Per facilitare la progettazione di applicazioni audio e video basate su IA/ML per dispositivi client, lo stack supporta una nuova piattaforma hardware che integra un sensore di immagini, due microfoni I2S e connettori di espansione per aggiungere ulteriori sensori.
Per quanto riguarda gli aggiornamenti dello stack, quest’ultimo mette a disposizione un compilatore di rete neurale aggiornato e supporta Lattice sensAI Studio, uno strumento basato su un’interfaccia grafica utente con una libreria di modelli di AI che può essere configurato e addestrato per i casi d’uso più diffusi e che ora supporta funzioni AutoML per consentire la creazione di moduli ML sulla base degli obiettivi relativi a set di dati e applicazioni. Molti dei modelli basati sulla piattaforma Mobilenet di addestramento per il processo inferenziale ML sono ottimizzati per gli FPGA CertusPro-NX. Inoltre lo stack è compatibile con le ultime versioni di altre piattaforme ML più diffuse – Caffe, Keras, TensorFlow e TensorFlow Lite.
La versione più recente dello stack Lattice sensAI prevede aggiornamenti hardware e software che semplificano ulteriormente il supporto AI/ML per altri dispositivi edge (le nuove funzionalità sono evidenziate nel diagramma sopra riportato). Registrandosi presso Lattice si riceveranno notizie sullo stack di soluzioni e sui prodotti più recenti.
Hussein Osman
Contenuti correlati
-
Visione artificiale e Machine Learning nelle applicazioni dell’Industria 4.0
Questo articolo è una panoramica sulla moderna tecnologia di visione artificiale supportata da funzioni di Intelligenza Artificiale nelle applicazioni dell’Industria 4.0 Leggi l’articolo completo su EO Lighting 35
-
Lattice amplia la sua gamma di FPGA
Lattice Semiconductor ha aggiunto alla sua offerta di dispositivi small FPGA i nuovi componenti logic-optimized Certus-NX-28 e Certus-NX-09. Questi dispositivi general-purpose sono basati sulla piattaforma FPGA Nexus e sono caratterizzati da consumi ridotti e ingombri limitati. I...
-
Automotive: il ruolo degli FPGA nell’evoluzione della “In-cabin experience”
Per poter supportare in maniera adeguata l’evoluzione sia della tecnologia sia delle richieste dei consumatori, i produttori stanno sempre più focalizzando la loro attenzione sui dispositivi FPGA, che rappresentano la soluzione ideale per effettuare la regolazione della...
-
Veicoli autonomi: il punto della situazione
Esistono pochi dubbi sul fatto che i veicoli autonomi facciano parte del futuro, anche se non sono pochi gli ostacoli, di natura tecnica e soprattutto etica, da superare per tradurre questa visione in una realtà concreta Leggi...
-
Partecipazione record per la terza edizione di ProgettistaPiù
Si è svolta dal 23 al 26 gennaio la terza edizione di ProgettistaPiù, il convegno digitale dedicato alla Progettazione Industriale che quest’anno ha registrato la più alta partecipazione di sempre. Abbiamo avuto una media di 5000 visualizzazioni...
-
I nuovi FPGA di Lattice Semiconductor
In occasione della Lattice Developers Conference, Lattice Semiconductor ha presentato due nuove famiglie di FPGA di fascia media, chiamate rispettivamente Avant-G e Avant-X, ma anche una serie di nuove versioni dei suoi stack di soluzioni specifiche per...
-
Apprendimento automatico alla periferia della rete: le considerazioni chiave per sviluppare un progetto sostenibile
Numerosi sistemi embedded, in particolare quelli utilizzati nelle installazioni IoT (Internet of Things) ubicate alla periferia della rete (edge), integrano algoritmi di apprendimento automatico (ML – Machine Learning). Mark Patrick, responsabile del Technical Marketing per la regione...
-
Webinar gratuito da element14 Community sul machine learning integrato
element14 ha annunciato un webinar gratuito in collaborazione con Nordic Semiconductor ed Edge Impulse, progettato per fornire assistenza ai principianti nel campo del machine learning (ML) integrato. Il webinar è previsto per il 21 novembre 2023 dalle...
-
Webinar gratuito di COMSOL su Machine learning e simulazione
COMSOL terrà Mercoledì 27 settembre alle 14.30 un webinar gratuito dedicato al machine learning e alla simulazione. Il webinar è stato organizzato in collaborazione con il dipartimento DESTEC dell’Università degli Studi di Pisa ed è focalizzata su...
-
La nuova piattaforma Appian introduce l’AI per l’automazione dei processi
Appian ha rilasciato una nuova versione della sua piattaforma per l’automazione dei processi che introduce AI Skill Designer, una modalità low-code per costruire, addestrare e distribuire modelli di machine learning (ML) personalizzati. Il design low-code consente agli...