POWER 6 - NOVEMBRE/DICEMBRE 2014
XXI
PMIC
un evento di hotswap, oltre a funzioni di controllo e di
monitoraggio di vitale importanza atte ad assicurare che
il funzionamento dei convertitori di potenza sia corretto
e questi ultimi non siano affetti da guasti.
La più recente versione di questo standard, 1.3, assicura
un controllo ancora più preciso grazie a un incremento
della velocità di trasferimento e della risoluzione dei dati
e l’aggiunta di un protocollo per supportare l’anello di
retroazione tra i convertitori PoL (Point of Load) e i re-
lativi carichi.
PMBus trae da sua origine da SMbus (System Manage-
ment Bus) e prevede le due linee di segnale supportate
da I2C (sul quale è basato SMBus) oltre a una linea di
segnalazione (alert) aggiuntiva che consente a qualsiasi
nodo sul bus di interrompere il master di sistema. In tal
modo quest’ultimo non è più costretto a interrogare su
base continuativa gli slave per ottenere gli aggiornamenti.
Sebbene di concezione molto semplice, grazie all’uso di
codici di comando a singolo byte, PMBus supporta oltre
100 comandi per la gestione della potenza, garantendo
la possibilità di future espansioni. Lo standard prevede
in futuro la possibilità di utilizzare comandi a 2 byte. I
comandi tipici sono impiegati per impostare la tensione
di uscita di un convertitore PoL e le soglie per gli allarmi
e i guasti, nonché controllare l’impostazione dei margini
di tensione che rappresentano un valido ausilio per il col-
laudo del sistema.
I margini di tensione possono essere utilizzati durante il
test per determinare se le prestazioni di un circuito inte-
grato sono soggette a un degrado eccessivo a causa di pic-
cole variazioni della tensione di alimentazione. Durante
questo processo è possibile individuare dispositivi fuori
specifica o il cui funzionamento è prossimo ai margini
impostati e sostituirli prima di introdurre il prodotto sul
mercato, riducendo in tal modo la probabilità che si veri-
fichino malfunzionamenti sul campo.
Il “margin testing” (procedura secondo la quale il livello
dell’ingresso cresce fino al momento in cui non si verifica
un guasto nel campione sottoposto a collaudo) è sempre
stato difficile da effettuare e spesso richiedeva l›utilizzo
temporaneo di resistori nei convertitori DC-DC al fine
di consentire alla loro tensione di uscita di variare al di
fuori dell’intervallo di valori nominali. I comandi per
l’impostazione dei margini della tensione di PMBus con-
sente di effettuare questi collaudi in maniera automatica
sfruttando una coppia di comandi che forzano la tensi-
one a valori più alti o più bassi rispetto a quelli nomina-
li. La versione 1.3 di PMBus prevede il supporto di im-
postazioni di una soglia di tensione relativa e assoluta in
modo da consentirne la modifica al variare della tensione
di uscita, semplificando in tal modo la generazione del
firmware per la manutenzione e il collaudo.
La versione 1.3 di PMbus assicura un controllo ancora più
accurate della tensione grazie al supporto della tecnolo-
gia AVS (Adaptive Voltage Scaling – variazione della ten-
sione di tipo adattativo). L’introduzione di tale tecnica è
dettata dal fatto che i circuiti ASIC, gli FPGA e i micro-
processori delle più recenti generazioni richiedono un
controllo della tensione di tipo dinamico. Per ottimizzare
in tempo reale i loro consumi di potenza nel momento
in cui variano i requisiti del sistema, tali dispositivi richie-
dono modifiche quasi impercettibili del valore della ten-
sione fornita dal convertitore PoL. I costruttori di pro-
cessori hanno sviluppato protocolli di tipo proprietario
per consentire ai dispositivi di comunicare tali esigenze
ai convertitori di potenza: ovviamente ciascuno di essi
richiede un supporto specifico. Implementata sotto for-
ma di semplice espansione di PMBus, la tecnologia AVS
mette a disposizione un protocollo standardizzato per
questi dispositivi che devono comunicare le loro richieste
al convertitore (Fig. 1).
Per garantire un’erogazione precisa della potenza, la tec-
nica AVS consente la rilevazione, da parte del convertito-
re PoL, della tensione e della corrente fornite al dispositi-
vo, così da permettere l’implementazione di algoritmi di
controllo ad anello chiuso per assicurare che i terminali
(rail) di alimentazione rimangano all’interno delle tolle-
ranze previste.
Il Bus AVS non è basato sul bus I2C come PMBus, ma
ricorda molto da vicino il bus seriale SPI. Essendo una
connessione punto-punto, esso non prevede la linea Chjp
Select (CS). Ne risulta un collegamento a tre fili con una
linea di clock e due line di dati (Fig. 2). Il collegamento
mediante PMBus attraverso il convertitore PoL permette
di conoscere lo stato del sottosistema controllato medi-
ante il bus AVS. Quest’ultimo rimanda i dati relativi allo
stato ad ogni transazione che può indicare un allarme –
dovuta ad esempio alla presenza di sovra-correnti o altri
tipi di malfunzionamento – o una variazione di tensione
Fig. 1 – AVSBus adotta una singola estensione di PM-
Bus per comunicare con il convertitore di potenza