Più applicazioni e migliori insight in tempo reale, secondo Couchbase il 2024 sarà l’anno dell’Intelligenza Artificiale

Pubblicato il 17 novembre 2023
Couchbase

Fabio Gerosa, Sales Director Italy di Couchbase, mette in luce i principali trend tecnologici che caratterizzeranno il prossimo anno

La tecnica Retrieval-Augmented Generation (RAG) sarà fondamentale per ottenere risultati fondati e contestuali con l’AI

L’entusiasmo per i modelli linguistici di grandi dimensioni e le loro capacità generative continuerà ad essere limitato dal problema delle allucinazioni. Si tratta di casi in cui i modelli producono output che, pur essendo coerenti, possono essere distanti dalla realtà fattuale o dal contesto dell’input. Con il progresso delle aziende sarà importante demistificare le allucinazioni dell’AI e implementare una tecnica emergente, definita Retrieval-Augmented Generation (RAG), la quale, abbinata a dati contestuali in tempo reale, può ridurre queste allucinazioni, migliorando accuratezza e valore del modello. La RAG introduce il contesto dell’azienda o dell’utente, riducendo le allucinazioni e aumentando veridicità e utilità.

I dati in tempo reale diventeranno lo standard per alimentare le esperienze di AI generativa; i dati dovranno supportare analytics transazionali e in tempo reale

La crescita sensazionale dell’AI generativa continuerà con forza anche nel 2024. Un numero maggiore di aziende la integrerà per alimentare applicazioni di dati in tempo reale e creare soluzioni dinamiche e adattive basate su AI. Diventando fondamentale per il business, le imprese dovranno assicurarsi che i dati su cui si basano i modelli di AI siano fondati su verità e realtà, sfruttando informazioni il più possibile “fresche”.

Proprio come gli alimenti, le card regalo e le medicine, anche i dati hanno una data di scadenza. Affinché l’AI generativa sia davvero efficace, accurata e fornisca risultati contestualmente rilevanti, deve basarsi su dati in tempo reale continuamente aggiornati. La crescente richiesta di insight in tempo reale spingerà l’adozione di tecnologie che consentono l’elaborazione e l’analisi di dati di questo tipo. Nel 2024 e oltre, le aziende sfrutteranno sempre più un livello di informazioni che supporti sia l’analisi transazionale che quella in tempo reale per prendere decisioni tempestive e rispondere istantaneamente alle dinamiche del mercato.

Il paradigma dell’AI passa da model-centric a data-centric

I dati sono fondamentali nel machine learning moderno, ma devono essere affrontati e gestiti correttamente nei progetti di AI. Poiché questa tecnologia adotta un approccio focalizzato sul modello, si sprecano centinaia di ore per mettere a punto modelli basati su dati di bassa qualità.

Con la maturazione, evoluzione e aumento dei modelli di AI, ci si impegnerà per avvicinare i modelli ai dati. L’AI data-centric consentirà alle aziende di fornire esperienze sia generative che predittive, basate sui dati più recenti, migliorando in modo significativo la resa dei modelli e riducendo al contempo le allucinazioni.

Le aziende si affideranno ai copiloti dell’intelligenza artificiale per ottenere insight in tempi più rapidi

L’integrazione di AI e machine learning nei processi di gestione dei dati e negli strumenti di analisi continuerà a evolversi. Con l’emergere dell’AI generativa, le aziende hanno bisogno di un metodo per interagire con l’AI e i dati che produce a livello contestuale. Sfruttando l’aumento di informazioni e analytics, le imprese inizieranno a integrare i copiloti dell’AI – che grazie alla capacità di comprendere ed elaborare grandi quantità di dati fungono da assistenti per i modelli di AI, ordinandoli e generando best practice e raccomandazioni – nei loro prodotti per ottenere insight più rapidamente.

L’incremento di informazioni è uno strumento potente che cambierà il modo di realizzare infrastrutture e applicazioni nei prossimi anni, in quanto la gestione aumentata dei dati ne automatizzerà le attività di routine di qualità e integrazione, mentre analytics aumentati forniranno insight avanzati e automatizzeranno il processo decisionale.

LLM e database multimodali abiliteranno una nuova frontiera di applicazioni AI in tutti i settori industriali

Uno dei trend più interessanti per il 2024 sarà l’ascesa dei LLM multimodali. Con l’emergere di questo fenomeno, è cresciuta l’esigenza di database multimodali in grado di archiviare, gestire e interrogare in modo efficiente diverse tipologie di dati. Tuttavia, dimensioni e complessità degli insiemi di dati multimodali rappresentano una sfida per i database tradizionali, tipicamente progettati per archiviare e interrogare un singolo tipo di dati, come testo o immagini.

I database multimodali, invece, sono molto più versatili e potenti e rappresentano una progressione naturale nell’evoluzione dei LLM per unire i diversi aspetti di elaborazione e comprensione delle informazioni, utilizzando modalità multiple come testo, immagini, audio e video. Sono numerosi i casi d’uso e i settori che beneficeranno direttamente di un approccio multimodale, tra cui sanitario, robotica, e-commerce, istruzione, retail e gaming. I database multimodali vedranno una crescita significativa e investimenti nel 2024 e oltre.

Il successo dell’Edge AI dipenderà dal progresso nei modelli leggeri di AI

L’innovazione che caratterizza l’AI è entusiasmante e l’edge computing è un modo per abilitare nuove applicazioni. Tuttavia, per rendere l’edge AI un’opzione praticabile, i modelli devono essere leggeri e in grado di funzionare su dispositivi embedded e server edge con risorse limitate, continuando a fornire risultati con livelli di accuratezza accettabili.

Sebbene siano già stati compiuti molti progressi nella compressione dei modelli, l’innovazione in questo settore continuerà ulteriormente, e, insieme ai progressi dei processori di intelligenza artificiale per l’edge, renderà l’EdgeAI onnipresente.

L’unico modo per scalare l’intelligenza artificiale sarà distribuirla, con l’aiuto dell’edge computing

La convergenza di edge e cloud AI sarà il modo per fornire AI su scala, cloud ed edge, con l’offloading delle attività di calcolo, se necessario. Ad esempio, l’edge può gestire le inferenze del modello e il cloud il suo addestramento o l’edge può scaricare le query al cloud a seconda della lunghezza di una richiesta e così via.

Quando si tratta di una strategia di AI di successo, non è pratico avere un approccio esclusivamente cloud. Le aziende devono considerare una strategia di edge computing – abbinata al cloud – per consentire previsioni di AI a bassa latenza e in tempo reale, in modo economicamente vantaggioso, senza compromettere privacy e sovranità dei dati.

L’apprendimento federato sarà un elemento chiave nel futuro dell’AI, soprattutto in un mondo in cui la privacy è messa a dura prova

Sebbene sia vero che potremmo aver archiviato l’apprendimento tradizionale quando si tratta di AI, ci sono ancora molte fonti di dati non sfruttate. Tutto ciò che facciamo sui nostri dispositivi viene sincronizzato con un server per addestrare modelli linguistici di grandi dimensioni (LLM) o mettere a punto LLM per un uso specifico.

È qui che entra in gioco l’apprendimento federato. Con la recente popolarità dell’intelligenza artificiale generativa, si è diffusa l’idea di adottare un approccio decentralizzato all’addestramento dei modelli di intelligenza artificiale, ovvero l’apprendimento federato.

Grazie alla capacità di protezione dei modelli di addestramento e di supporto delle applicazioni sensibili alla privacy, l’apprendimento federato sarà un elemento cruciale per sbloccare il futuro dell’AI, affrontando al contempo le preoccupazioni cruciali relative a privacy e sicurezza dei dati.



Contenuti correlati

  • ADI
    ADI implementa l’AI generativa con SambaNova System

    Analog Devices (ADI) ha annunciato la collaborazione con  SambaNova System per implementare l’AI generativa. L’obiettivo di ADI è quello di guidare la sua trasformazione globale, rendendo l’AI pervasiva in tutta l’azienda. Come parte della fase iniziale dell’implementazione,...

  • Rimozione del rumore in immagini a raggi X basata su algoritmi di deep-learning

    Hamamatsu Photonics ha sviluppato una nuova tecnologia di riduzione del rumore basata su algoritmi di deep learning e su un nuovo metodo di simulazione delle immagini a raggi X Leggi l’articolo completo su EO Lighting33

  • Clearbox AI
    I modelli AI per le banche: ecco perché non funzionano

    A cura di Shalini Kurapati, Co-Founder e CEO di Clearbox AI Nel mese di luglio è rimbalzata sulla stampa mondiale la notizia di uno studio condotto da un gruppo di ricercatori di Stanford e Berkeley in cui...

  • Innodisk
    Da Innodisk un nanoSSD PCIe compatto e con elevate prestazioni

    Innodisk ha realizzato il primo nanoSSD PCIe 4TE3 per design AI edge caratterizzati da elevata miniaturizzazione e prestazioni di elaborazione elevate come quelli 5G, automotive e aerospaziali. Questa soluzione è progettata nel fattore di forma BGA M.2...

  • Couchbase
    Utilizzare i dati in tempo reale per unire Intelligenza Artificiale generativa e predittiva

    di Rahul Pradhan, VP, Product and Strategy, Couchbase Nell’era del processo decisionale guidato dai dati, il ruolo dell’artificial intelligence (AI) non è mai stato così centrale. Dalle previsioni dell’andamento del mercato azionario, alla generazione di contenuti personalizzati...

  • Snowflake
    AI generativa, come ridurre al minimo i rischi di perdita o furto di dati

    Di Torsten Grabs, Senior Director of Product Management, Snowflake Le aziende hanno rapidamente riconosciuto la potenza dell’AI generativa per alimentare nuove idee e migliorare la produttività. Tuttavia, rendere disponibili dati sensibili e proprietari in modelli linguistici di...

  • AMD
    AMD acquisisce Mipsology

    AMD  ha acquisito Mipsology, azienda specializzata in software AI con sede a Palaiseau, in Francia, con l’obiettivo di potenziare le funzionalità del software di inferenza. AMD precisa che il team aiuterà a sviluppare l’intero stack software di...

  • SolidRUN
    SolidRun presenta Bedrock R7000

    SolidRun ha realizzato un nuovo PC industriale fanless che combina processori AMD Ryzen serie 7040 a 8 core con più acceleratori AI Hailo-8. Il nuovo PC si chiama Bedrock R7000 ed è destinato ad applicazioni di intelligenza...

  • Capitalizzazione di mercato record per Nvidia

    La società di ricerche di mercato IDTechEx ha recentemente pubblicato un rapporto che evidenzia il costante predominio di Nvidia non soltanto nel settore delle GPU, ma più specificamente anche in quello dell’hardware per AI. Nvidia, inoltre, martedì...

  • Intelligenza Artificiale Creativa nel futuro dell’AI

    È logico aspettarsi in un futuro, nemmeno troppo lontano, un mondo popolato da robot sempre più “umani”? Queste macchine saranno in grado di replicare i comportamenti tipici dell’uomo come, ad esempio, i sentimenti ma soprattutto la creatività?...

Scopri le novità scelte per te x