La correzione del fattore di potenza nei caricatori di bordo impiegati nel settore automotive

Pubblicato il 16 dicembre 2021

Per favorire la crescita del mercato dei veicoli elettrici (EV – Electric Vehicle) è necessario che sia attivo un numero adeguato di stazioni di ricarica. D’altronde i guidatori devono essi sicuri di poter completare il loro viaggio in tempi ragionevoli senza doversi fermare a causa del fatto che la batteria è scarica. Mentre l’attenzione è focalizzata sui caricabatterie veloci in continua (DC) ad alta potenza, un rapporto di McKinsey & Company indica che nel prossimo decennio la maggior parte delle ricariche avverrà utilizzando fonti in alternata (AC) per cui sarà necessaria la presenza del caricatore di bordo (OBC – On Board Charger).

I veicoli elettrici a batteria (BEV – Battery Electric Vehicle), ovvero con sola trazione elettrica, come pure i veicoli elettrici di tipo plug-in (PHEV – Plug-in Hybrid EV), che includono un motore a combustione interna (ICE – Internal Combustion Engine), dispongono di caricatori a bordo. I veicoli elettrici ibridi (HEV – Hybrid EV), invece, ricaricano la batteria tramite il motore o la frenata rigenerativa e di conseguenza non richiedono un OBC.

Gli OBC possono essere alimentati mediante energia elettrica monofase o trifase e supportano livelli di potenza fino a 22 kW per assicurare la maggior velocità di ricarica possibile. Poichè tutte le batterie richiedono una potenza elettrica in corrente continua (DC power) per la ricarica, il compito principale dell’OBC è rettificare la tensione di ingresso della rete e convertirla in una tensione adatta per caricare la batteria, che può essere di 400 V oppure, sempre più frequentemente, di 800 V (Fig. 1).

Fig. 1 – Blocchi funzionali del percorso della potenza di un OBC

Nel progetto di un OBC l’efficienza è sicuramente un parametro critico. Affinché la ricarica sia la più rapida possibile, i progettisti devono assicurare che alla batteria venga fornita la maggior quantità possibile della potenza prelevata dalla rete minimizzando in tal modo l’energia sprecata. L’energia sprecata è convertita in calore il cui smaltimento deve essere gestito a livello di sistema.

Mentre è risaputo che la commutazione dei componenti e le perdite per conduzione sono responsabili della diminuzione dell’efficienza vi è un altro fattore che, sebbene meno evidente, può contribuire in maniera significativa a questo fenomeno, specialmente in presenza di carichi reattivi. Si tratta del fattore di potenza (PF – Power Factor), ovvero il rapporto tra la potenza utile (reale o attiva), espressa in Watt, e la potenza totale (apparente), espressa in Volt-Ampere consumata da qualsiasi carico connesso alla rete/linea elettrica (Fig. 2). La componente reattiva della potenza apparente del triangolo delle potenze viene sprecata (ovvero non produce Watt utili).

Il fattore di potenza misura l’efficienza con la quale la potenza della rete consumata viene convertita in potenza in corrente continua prima della conversione eseguita nel blocco DC-DC dell’OBC che rifornisce il pacco batteria ad alta tensione.

Fig. 2: Il triangolo delle potenze – tratta da “Power Factor Correction (PFC) Basics,” Publication AN-42047 di onsemi

La correzione del fattore di potenza (PFC – Power Factor Correction) è una tecnica da tenere nella dovuta considerazione nel progetto di un OBC, in quanto permette di ridurre la potenza reattiva nella conversione AC-DC incrementando in tal modo l’efficienza del sistema. Il controllore del PFC in un OBC assolve parecchie funzioni:

  • Allinea la corrente di fase in ingresso con la tensione di fase in ingresso,
  • Riduce la corrente di picco assorbita dalla sorgente in alternata,
  • Minimizza la distorsione armonica totale (THD) della corrente di linea/rete,
  • Assicura che la corrente di ingresso abbia un andamento che si avvicini il più possibile a quello di una forma d’onda sinusoidale.

In molti casi, il fattore di potenza di un OBC deve essere ≥ 0,9 sull’intero intervallo di potenza operativa, mentre nell’intervallo di funzionamento normale è richiesto un PF ≥ 0,98. Un PF elevato ottimizza la capacità di carica minimizzando nel contempo la potenza apparente (e di conseguenza la corrente di linea/rete richiesta). In futuro, l’attenzione di focalizzerà sull’apporto di ulteriori migliorie relative al contenuto armonico della rete/linea e sullo sviluppo di modalità ottimizzate in presenza in carichi ridotti.

Nelle applicazioni meno complesse che coinvolgono sistemi a bassa potenza si utilizza spesso la correzione del fattore di potenza di tipo passivo. Gli elevati livelli di potenza tipici degli OBC impongono il ricorso alla correzione del fattore di potenza di tipo attivo, in quanto permette ai progettisti di soddisfare i requisiti di natura termica, rispettare i vincoli in termini di ingombri e conseguire i loro obiettivo per quanto concerne il fattore di potenza.

Per quanto concerne la correzione del fattore di potenza di tipo attivo esistono numerosi approcci (Fig. 3), tra cui le tradizionali topologie boost, boost interleaved (interlacciata) a 2 canali, boost senza ponti (bridgeless), rettificatore Vienna, totem pole e ponte a 3 o 4 rami (leg).

Fig. 3 – Tipiche topologie PFC in funzione dei livelli di potenza dell’OBC

 A causa degli elevati valori di potenza in gioco, nel caso degli OBC è senz’altro utile il ricorso a topologie PFC che prevedono la presenza di un numero ridotto di diodi nel percorso di potenza oppure l’utilizzo di diodi Schottky in carburo di silicio (SiC) che in pratica non evidenziano alcun fenomeno di recupero inverso. I progettisti possono anche ricorrere a MOSFET in carburo di silicio, in modo da consentire allo stadio PFC di commutare a frequenze più elevate, gestire tensioni più alte a livello di sistema e incrementare sia l’efficienza sia la densità di energia.

In funzione della topologia selezionata, saranno richiesti vari tipi di componenti per implementare un circuito PFC. onsemi è in grado di fornire tecnologie scalabili per gli stadi di potenza dei caricatori di bordo degli autoveicoli da 3,3 a 22 kW e tensioni di batteria fino a 800 V. La collaborazione con onsemi permette ai clienti di progettare soluzioni flessibili per le infrastrutture di ricarica e gli OBC per l’intera gamma di applicazioni che coinvolgono i veicoli elettrici.

Il portafoglio prodotti della società include MOSFET SiC, IGBT ibridi con diodi SiC integrati nel medesimo package, MOSFET a super-giunzione, APM (Automotive Power Module), diodi SiC, circuiti per il pilotaggio del gate, dispositivi per la regolazione della potenza e soluzioni IVN (In-Vehicle Networking).

Marc Bracken Automotive Technical Marketing (onsemi)



Contenuti correlati

  • ROHM, Mazda e Imasen firmano un accordo congiunto

    ROHM  ha firmato un accordo di sviluppo congiunto con Mazda Motor Corporation (Mazda) e Imasen Electric Industrial, (Imasen) per inverter e moduli di potenza con tecnologia SiC da utilizzare nelle unità di azionamento dei veicoli elettrici, incluso...

  • Automotive: continua lo shortage

    Nonostante il calo della domanda dei chip, il settore automotive continua a essere penalizzato dalla penuria di componenti. Nel momento in cui è cominciata la pandemia, i produttori di computer, dispositivi elettronici consumer e appliance di varia...

  • Raffreddamento sul lato superiore per i nuovi MOSFET di onsemi

    Presso lo stand onsemi, a electronica 2022, i visitatori possono vedere i nuovi dispositivi MOSFET con raffreddamento sulla parte superiore concepiti per semplificare il lavoro dei progettisti che sviluppano applicazioni particolarmente complesse in campo automotive, come il...

  • Visione artificiale: orizzonti sempre più ampi grazie all’intelligenza artificiale

    Negli ultimi anni l’uso dei sistemi di visione artificiale nei processi industriali è aumentato in maniera considerevole Leggi l’articolo completo su Embedded 86

  • Il mercato dei chip riparte (dal Q2 2023)

    Nel corso dei suoi 60 anni di storia, il mercato dei chip ha sempre evidenziato un andamento di natura ciclica. Facendo un viaggio a ritroso nel tempo (metà anni ’70), non si è mai registrato un periodo...

  • Collaborazione fra Infineon e Stellantis per i SiC

    Infineon Technologies ha comunicato di aver siglato con il colosso automobilistico Stellantis un memorandum non vincolante come primo passo per una potenziale collaborazione pluriennale per i semiconduttori SiC (carburo di silicio). Infineon precisa che il potenziale volume...

  • Le più innovative tecnologie di onsemi a electronica 2022

    I visitatori dello stand di onsemi a electronica 2022 potranno assistere a una serie di dimostrazioni relative a tecnologie destinate ai mercati automotive, industriale e per il cloud. Saranno infatti presentate soluzioni per applicazioni come per esempio...

  • Collaborazione fra Analog Devices e AUO per una nuova tipologia di display widescreen

    I display automotive widescreen di AUO Corporation utilizzeranno la tecnologia di ADI per i driver a matrice di LED. ADI ha ideato infatti un sistema, denominato local dimming, che pilota i LED dietro lo schermo dell’unità di...

  • Da onsemi la famiglia ecoSpin per il controllo dei motori BLDC

    ecoSpin è una nuova famiglia di controllori per motori BLDC (Brushless DC) realizzata da onsemi che riunisce le funzioni di controllo e quelle di pilotaggio in un’unica soluzione SiP (System-in-Package). Il primo componente della nuova famiglia è...

  • Nuovo impianto di STMicroelectronics in Italia per i substrati SiC

    STMicroelectronics realizzerà a Catania un impianto integrato, il primo di questo tipo in Europa, per la produzione di substrati in carburo di silicio (SiC). L’obiettivo è quello di supportare la domanda crescente di dispositivi SiC per applicazioni...

Scopri le novità scelte per te x