Alimentazione: alcuni suggerimenti (parte 8) – Come ridurre le interferenze elettromagnetiche variando la frequenza dell’alimentatore

Dalla rivista:
Elettronica Oggi
In questo articolo vi presentiamo una tecnica che può aiutarvi a soddisfare i requisiti EMI e, forse, a semplificare il design del filtro. Con questa tecnica viene modulata la frequenza di commutazione dell’alimentatore per distribuire l’energia del rumore sulle bande laterali e modificare lo spettro dei disturbi dalla banda stretta alla banda larga (firma spettrale), attenuando in modo efficace i picchi armonici. È da notare che le interferenze elettromagnetiche non vengono ridotte, ma solo ridistribuite.
Con una modulazione sinusoidale, due delle variabili che è possibile controllare sono la frequenza di modulazione (fm) e la deviazione di frequenza dell’alimentatore (Δf). L’indice di modulazione (β) è il rapporto tra queste due grandezze, ovvero:
β =Δf/fm

Fig. 1 – La modulazione della frequenza dell’alimentatore espande la firma spettrale delle interferenze EMI
La figura 1a mostra in quale misura varia l’indice di modulazione in caso di forme d’onda sinusoidali. Con β=0 non c’è spostamento di frequenza ed è presente una sola riga spettrale. Con β=1, lo spettro di frequenza inizia ad ampliarsi e la componente centrale scende del 20%. Con β=2, lo spettro di frequenza si amplia ulteriormente e la componente più grande della frequenza rappresenta il 60% rispetto al caso originale. Per quantificare l’energia presente in questo spettro è possibile utilizzare la teoria della modulazione di frequenza. Secondo la regola di Carson, la maggior parte dell’energia sarà contenuta in una larghezza di banda pari a 2 * (Δf + fm). La figura 1b mostra indici di modulazione ancora più elevati, dimostrando che è possibile ridurre i valori di punta dei disturbi EMI di oltre 12 dB.

Fig. 2 – Variando la frequenza dell’alimentatore si attenua la componente fondamentale, ma si aumenta il rumore di fondo
Per questi motivi, la scelta ricade in genere su una frequenza di modulazione non troppo superiore alla larghezza di banda del ricevitore, ma fuori dal range udibile. Come risulta ovvio dalla figura 1b, è preferibile una modifica elevata della frequenza operativa. È tuttavia importante sapere che questo avrà degli effetti sul design dell’alimentatore. Quindi è consigliabile scegliere i componenti magnetici in riferimento alla frequenza operativa più bassa. Il condensatore di uscita deve inoltre gestire correnti di ripple più elevate, a causa del funzionamento a frequenza più bassa.
La figura 2 mostra un confronto delle prestazioni EMI misurate con e senza modulazione della frequenza. L’indice di modulazione è pari a quattro e, come previsto, la riduzione delle interferenze elettromagnetiche è nell’ordine degli 8 dB con la componente fondamentale. Sono però da notare anche altri aspetti. Le armoniche sono distribuite sulle bande di frequenza in base al relativo numero, vale a dire che la terza armonica viene espansa tre volte in più rispetto alla componente fondamentale. Lo stesso si ripete alle frequenze più alte, elevando notevolmente il rumore di fondo rispetto al caso a frequenza fissa. Di conseguenza questa tecnica potrebbe essere inutilizzabile nei sistemi a basso rumore, ma risulta vantaggiosa per molti sistemi, per via della maggiore flessibilità di progettazione e della riduzione dei costi del filtro EMI.
Un ringraziamento a John Rice e Mike Segal di Texas Instruments per il loro lavoro in questo settore. Il prossimo argomento della rubrica sarà la valutazione dell’aumento di temperatura dei componenti.
Per ulteriori informazioni sulle soluzioni per l’alimentazione, visitare il sito www.power.ti.com. Per eventuali domande sui contenuti del presente articolo potete contattarmi all’indirizzo powertips@list.ti.com.
Fonti di riferimento
1 – “Reduction of Power Supply EMI Emissions by Switching Frequency Modulation,” Feng and Chen, IEEE Transactions on Power Electronics, 1994.
2 – “EMI Filter Design, SEM1500, Topic 1”: http://focus.ti.com/docs/training/catalog/events/event.jhtml?sku=SEM403002
Robert Kollman, Texas Instruments
Contenuti correlati
-
Tecnologia GaN e MCU real-time di TI per il nuovo alimentatore per server di LITEON Technology
LITEON Technology ha scelto i FET GaN e i microcontroller real-time C2000 di Texas Instruments (TI) per il suo nuovo alimentatore per server (PSU) per il mercato Nordamericano. Questo PSU offre una densità di potenza di oltre...
-
Una nuova gamma di MCU con Arm Cortex-M0+ da Texas Instruments
Texas Instruments (TI) ha introdotto nella sua offerta di microcontrollori per uso generale una nuova serie di basata su Arm Cortex-M0+ dotata di un’ampia gamma di opzioni. Si tratta della famiglia di MCU MSPM0 che consente ai...
-
Progettazione delle catene di segnale per apparecchiature diagnostiche portatili
In questo articolo verranno illustrate due tipologie di catena di segnale utilizzate nelle apparecchiature diagnostiche portatili, ovvero l’amplificazione degli acidi nucleici (NAAT – Nucleic Acid Amplification Test) di tipo elettrochimico e di tipo ottico Leggi l’articolo completo...
-
Come creare un’esperienza audio sempre più coinvolgente nelle applicazioni automotive
L’impiego di altoparlanti a maggiore impedenza e l’implementazione del controllo di Classe H possono contribuire a sviluppare un sistema audio di peso inferiore, con tutti i vantaggi che ciò comporta Leggi l’articolo completo su EO 508
-
Guida tecnica ai convertitori dati
La conversione dei dati è una funzione essenziale che collega il mondo analogico a quello digitale. La conversione da analogico a digitale e da digitale ad analogico è presente nella maggior parte dei sistemi embedded. Dai sensori...
-
Sviluppo dell’intelligenza e elettrificazione per TI a embedded world 2023
A embedded world 2023 Texas Instruments (TI) presenterà le innovazioni nel campo dell’elaborazione e dell’elettrificazione embedded, compresi i nuovi microcontroller (MCU) e processori basati su Arm Cortex, nonché ulteriori tecnologie integrate in applicazioni per sistemi avanzati di...
-
Nuova fabbrica di TI nello Utah
Texas Instruments (TI) realizzerà una nuova fabbrica per wafer da 300 millimetri a Lehi, nello Utah. L’investimento previsto è di 11 miliardi di dollari e il nuovo impianto contribuirà a migliorare le economie di scala dell’azienda. La...
-
Produzione industriale di nuova generazione con l’IIoT
La versione industriale dell’Internet of Things trasferisce i vantaggi di Industria 4.0 nel settore manifatturiero Leggi l’articolo completo su Embedded 87
-
Monitoraggio dello stato dei satelliti mediante amplificatori di rilevamento della corrente
Gli amplificatori di rilevamento della corrente costituiscono un elemento fondamentale di numerosi sistemi di monitoraggio dei satelliti che permettono di capire il loro comportamento dalla Terra Leggi l’articolo completo su EO 507
-
Compromessi e tecnologie per aumentare la densità di potenza
Un aspetto fondamentale per una progettazione di successo è spesso la riduzione delle dimensioni dell’alimentatore. Lo spazio è limitato. La pressione a ottenere di più con minore dispendio di risorse è costante. Più in generale, la miniaturizzazione...