Alimentazione: alcuni suggerimenti (parte 45) – Gestione dei transitori di carico di/dt elevati (Parte 2)
Nel Power Tip 44 abbiamo esaminato i requisiti di bypass dei condensatori per i carichi con elevate variazioni di corrente dinamica. Abbiamo sottolineato l’importanza di disporre di condensatori con un’induttanza in serie equivalente (ESL) ridotta e vicini al carico, dato che meno di 0,5 nH possono creare escursioni di tensione inaccettabili. Realisticamente, ottenere un’induttanza così bassa richiede la presenza di più condensatori di bypass e di più pin di interconnessione nel package del processore. Ora analizzeremo il valore di capacità di bypass richiesto con requisiti di/dt realistici nell’uscita dell’alimentazione.
La figura 1 mostra il modello P-SPICE del sistema di alimentazione utilizzato per questa analisi. La figura presenta un’alimentazione con circuiteria di compensazione, modulatore (G1) e condensatore di uscita. Sono inclusi l’induttanza di interconnessione e un modello di carico con capacità di bypass, carico CC e carichi a fasi.
Per prima cosa è necessario decidere se trattare l’alimentazione e il carico come scatole nere separate o se affrontare il problema attraverso una progettazione completa del sistema di alimentazione. Utilizzando un approccio a livello di sistema, è possibile sfruttare la capacità di bypass di carico per ridurre la capacità di uscita dell’alimentazione, risparmiando sui costi di sistema. Scegliendo invece un approccio a livello di scatola nera, è possibile testare separatamente l’alimentazione e il carico. Indipendentemente dalla scelta, sarà comunque necessario determinare quanto della capacità di bypass risulta richiesto per il carico.
Per prima cosa è necessario stimare l’induttanza di interconnessione e la resistenza tra l’alimentazione e il carico. Tale impedenza di interconnessione (LINTERCONNECT) crea un filtro passa basso con il condensatore di bypass (CBYPASS). Consideriamo per questo esempio un valore basso per l’impedenza di uscita dell’alimentazione. Utilizzare l’impedenza caratteristica di questo filtro passa basso (ZO), la grandezza della fase di carico (ISTEP) e la variazione di tensione consentita (dV) per stabilire i requisiti del filtro di bypass (equazioni 1 – 2):
Risolvendo l’equazione 2 per Z0 e sostituendola nell’equazione 1, si ottiene l’equazione 3:
È interessante sottolineare che il valore di capacità necessario è correlato al quadrato della corrente di carico, diviso per il quadrato della perturbazione consentita, ciò significa che entrambi i valori devono essere determinati attentamente.
L’induttanza di interconnessione può passare da poche decine di un nH con un’alimentazione collocata a poche centinaia di nH con un’alimentazione localizzata in remoto. In genere si considera un incremento dell’interconnessione di circa 15 nH per pollice. Per un corrente di carico da 10 amp e una perturbazione consentita di 30 mV, i requisiti di esclusione possono variare da 500 uF per 5 nH ad appena 50 mF per 500 nH.
Tale filtro riduce anche la frequenza dell’alimentazione dell’incremento della corrente di carico. Se un filtro viene eccitato da un’onda quadra di corrente, la corrente dell’induttore risulta sinusoidale. Il tasso di incremento viene calcolato differenziando la forma d’onda della corrente nelle equazioni 4 – 7.
Con 5 nH di interconnessione e 500 uF di bypass, una fase da 10 amp crea un tasso di incremento nella corrente di alimentazione di 0,2 A/uS. Un’induttanza maggiore comporta valori di/dt inferiori. Si tratta di valori molto inferiori rispetto a quelli normalmente specificati dai progettisti di sistemi.
Nell’approccio a livello di sistema, si riduce al minimo la capacità totale massimizzando allo stesso tempo la larghezza di banda del ciclo chiuso. Passiamo adesso all’approccio a livello di scatola nera. In questo approccio è necessario rendere stabile l’alimentazione ai due estremi, senza alcuna capacità di bypass e con la massima capacità di bypass prevista.
Come indicato in precedenza, l’induttanza di interconnessione può incrementare i requisiti della capacità di bypass del carico. Utilizzando l’approccio a livello di scatola nera, tale aspetto ha a sua volta un impatto diretto sulla capacità dell’alimentazione. L’intervallo della capacità collegata stabilisce l’intervallo della frequenza di crossover dell’alimentazione. In entrambe le modalità di tensione e corrente, il rapporto risulta proporzionale. È possibile massimizzare la frequenza di crossover senza alcuna capacità di carico, tuttavia, una volta collegato il carico, la frequenza di crossover si riduce considerevolmente.

Tabella 1 – Mantenere i costi di sistema di alimentazione bassi utilizzando un approccio a livello di sistema
La tabella 1 presenta un confronto tra i condensatori richiesti per tre induttanze interconnesse destinate al nostro sistema esemplificativo. Tali dati sono stati generati variando l’induttanza di interconnessione, calcolando la capacità di bypass del carico e progettando una fase di uscita appropriata e un ciclo chiuso di controllo per l’alimentazione. Il Caso 1 presenta il carico e l’alimentazione collocati; il Caso 2 presenta un valore medio per l’induttanza di interconnessione tra l’alimentazione e il carico. Nel Caso 3 il sistema presenta un valore estremo della caratteristica di induttanza di un’alimentazione collegata via cavo. Il valore di bypass richiesto è direttamente correlato all’induttanza di interconnessione.
In questo esempio, il Caso 3 presenta un valore di induttanza, e pertanto di capacità di bypass, 100 volte superiore. Ciò comporta un’ondulazione di tensione ,dato che quest’ultima deve rimanere stabile con e senza i condensatori di bypass. Chiaramente, è da favorire il primo approccio, dato che utilizza il minor numero di condensatori e dovrebbe pertanto risultare il più economico. Nel Caso 2, con un’induttanza di interconnessione ragionevolmente controllata, è presente un incremento moderato nel numero di condensatori. Un valore elevato di induttanza di interconnessione, come quello presente nel Caso 3, presenta invece un costo elevato. Nei Casi 2 e 3 non va sottovalutata la comodità di eseguire test autonomi dell’alimentazione.

Fig. 2 – L’oscillazione transitoria della tensione diventa un problema in presenza di un’induttanza elevata di interconnessione
La figura 2 confronta le simulazioni della variazione di tensione di uscita durante i transitori di carico con un’induttanza di interconnessione limitata ed elevata. La risposta dell’induttanza limitata si esaurisce in fretta, mentre l’induttanza elevata non viene altrettanto esaurita e richiede più tempo per risolversi. Ciò è dovuto alla maggiore impedenza caratteristica e alla minore frequenza risonante. Inoltre, possono verificarsi variazioni di tensione estremamente ampie e potenzialmente dannose, qualora la corrente di carico dovesse pulsare a tale frequenza risonante.
Riepilogando, i carichi di/dt elevati richiedono un attento dimensionamento delle capacita di bypass per preservare la regolazione dinamica dell’alimentazione. L’utilizzo di un’interconnessione a bassa induttanza risulta essenziale tra il carico e i condensatori di bypass, così come tra i condensatori di bypass e il carico. Un approccio a livello di sistema conduce a una soluzione dal costo ridotto. Molti progettisti di sistemi sottovalutano i potenziali risparmi legati all’eliminazione della capacità dell’alimentazione, in favore di un semplice collaudo del sistema.
Nel prossimo incontro analizzeremo i risultati empirici per determinare la tempistica ottimale del comando di gate in un buck sincrono.
Per ulteriori informazioni su questa e altre soluzioni per gli alimentatori, visitare: http://www.ti.com/power-ca
Per contattare Robert Kollman: powertips@list.ti.com
Leggi tutti i corsi
Robert Kollman, Texas Instruments
Contenuti correlati
-
Ottimizzare elaborazione, rilevamento e controllo general purpose con le MCU Arm Cortex-MO+
Le MCU MSPM0 Arm Cortex-M0+ proposte da Texas Instruments offrono ai progettisti maggiori opzioni, più flessibilità di progettazione e una gamma più ampia di software e strumenti intuivi Leggi l’articolo completo su EO 512
-
Certificazione LEED Gold versione 4 per la nuova fabbrica di TI
Il nuovo stabilimento RFAB2 a Richardson di Texas Instruments (TI) ha ottenuto la certificazione LEED (Leadership in Energy and Environmental Design) Gold nella versione 4 (v4). Questa certificazione, che riconosce la sostenibilità di progettazione, costruzione e funzionamento...
-
Da Texas Intruments nuovi sensori a effetto Hall e soluzioni a shunt integrato
Texas Instruments ha realizzato dei nuovi sensori di corrente che consentono di semplificare i progetti, migliorando al tempo stesso l’accuratezza. Questi nuovi prodotti sono stati progettati per una vasta gamma di tensioni di modo comune e temperature...
-
Nuovo webinar per i sistemi di ricarica EV da Mouser Electronics e Texas Instruments
Mouser Electronics e Texas Instruments hanno realizzato un nuovo webinar dal titolo “Come semplificare i progetti dei sistemi di ricarica EV con i microcontrollori C2000″. Il webinar live gratuito si terrà alle 15:00 CET del 27 giugno...
-
congatec ha aggiunto i processori di TI al proprio portafoglio di soluzioni
congatec ha aggiunto i processori di Texas Instruments (TI) alla sua gamma di soluzioni Arm. L’azienda ha precisato che la prima piattaforma disponibile sarà conga-STDA4, un modulo COM in formato SMARC equipaggiata con un processore TDA4VM basato...
-
Data center più sostenibili grazie all’efficienza termica
Le innovazioni nella progettazione dei semiconduttori e nelle tecnologie dei package stanno migliorando l’’efficienza nei data center di pari passo con l’aumento delle esigenze di potenza Leggi l’articolo completo su EO 510
-
GaN per il controllo motore
Il silicio (Si) ha raggiunto i suoi limiti teorici nelle applicazioni di potenza, richiedendo così nuovi materiali che presentino una maggiore efficienza, una migliore gestione termica e, possibilmente, permettano di ridurre i costi e le dimensioni. Il...
-
Tecnologia di pulizia a ultrasuoni degli obiettivi: alcuni concetti fondamentali
Questo articolo tratterà la tecnologia di pulizia a ultrasuoni degli obiettivi, nota come ULC (Ultrasonic Lens Cleaning), e il modo in cui può contribuire a tramutare in realtà le applicazioni di pulizia automatica delle telecamere Leggi l’articolo...
-
Lauterbach annuncia il supporto dei processori AM6xAx di Texas Instruments
Lauterbach ha annunciato il supporto da parte dei suoi strumenti di sviluppo TRACE32 delle serie di SoC AM62Ax, AM68A e AM69A di Texas Instruments. Questo comprende il debug simultaneo dei core eterogenei della CPU e l’acquisizione non...
-
La progettazione per alte tensioni di modo comune in moduli di ingresso analogici
In questo articolo vengono esaminate le fonti di segnali ad alta tensione di modo comune e i tipici requisiti industriali. Inoltre, vengono introdotte le implementazioni di isolamento del segnale e di scaling del segnale. È possibile applicare l’isolamento...