Alimentazione: alcuni suggerimenti (parte 42) – Dispositivi discreti: una valida alternativa ai MOSFET integrati (parte 1 di 2)
Nella progettazione delle soluzioni di alimentazione, molto spesso i progettisti devono affrontare il problema della limitazione alla corrente di comando disponibile dal proprio circuito integrato di controllo o della dissipazione eccessiva di alimentazione presente nello stesso, a causa delle perdite provenienti dal comando di gate. Per contrastare tali problemi, vengono spesso utilizzati driver esterni. I produttori di semiconduttori (tra cui TI) dispongono di soluzioni basate su driver MOSFET pronte all’uso, sotto forma di circuiti integrati. Tuttavia, tale approccio si rivela in genere costo Spesso la soluzione può essere basata su componenti discreti al costo di pochi centesimi.
Lo schema in figura 1 mostra una coppia di inseguitori di emettitore NPN/PNP, utilizzabile per limitare l’uscita di un circuito integrato di controllo. Ciò incrementa potenzialmente la capacità di comando del controller e sposta la dissipazione della potenza di comando sui componenti esterni. Molti ritengono che questo particolare circuito non sia in grado di erogare una corrente di comando sufficiente.
Come mostrato nelle curve hfe della figura 2, i produttori non forniscono in genere dati superiori a 0,5 A per tali dispositivi a bassa corrente. Tuttavia, il circuito presenta una disponibilità di corrente ben superiore a 0,5 Amp, come mostrato nella forma d’onda scope riportata in figura 1. Per questa forma d’onda, il buffer è stato azionato con una sorgente da 50 Ohm e caricato con un condensatore da 0,01 uF collegato in serie con un resistore da 1 Ohm.

Fig. 2 – I driver a corrente elevata come il modello FMMT618 possono dare un comando molto forte (Superiore: MMBT3904 / Inferiore: FMMT618)
La traccia mostra la tensione presente tra il resistore da 1 Ohm, pertanto la scala sul grafico è pari a 2 Amp per divisione. Tale figura mostra inoltre che il modello MMBT2222A è in grado di erogare quasi 3 Amp, mentre il modello MMBT3906 si attesta a una dissipazione di 2 Amp.
Nella realtà, i transistor verrebbero accoppiati ai relativi complementi (MMBT3904 per 3906 e MMBT2907 per 2222). Queste due soluzioni sono stati mostrate a scopo di confronto. Sono inoltre disponibili dispositivi con una capacità di corrente superiore e con valori hfe superiori, come la coppia FMMT618/718, che presenta un valore hfe quasi pari a 100 a 6 Amp di corrente (Fig. 2). Pur non essendo dotati dell’eleganza di un driver integrato, i modelli discreti rappresentano soluzioni economiche con capacità ottimizzate sia dal punto di vista termico che della cdriving capability.
La figura 3 mostra una variazione al buffer semplice che consente di superare un limite di isolamento. Un trasformatore di livello di segnale viene azionato mediante un segnale di comando bipolare simmetrico. Il secondario del trasformatore viene utilizzato per generare potenza per il buffer oltre che per emettere il segnale di ingresso al buffer. I diodi D1 e D2 raddrizzano la tensione dal trasformatore mentre i transistor Q1 e Q2 limitano l’impedenza di uscita del trasformatore per fornire grandi impulsi di corrente, da utilizzare per caricare e scaricare il gate di un FET collegato attraverso l’uscita. Tale circuito è estremamente efficace e presenta un duty cycle del 50% (vedere il segnale di comando inferiore in Fig. 3), dato che azionerà il gate del FET negativo e fornirà un rapido spegnimento, riducendo al minimo le perdite di commutazione. Ciò lo rende ideale per il convertitore a ponte interno con variazione di fase.
Se si utilizza una forma d’onda di comando superiore al 50% (Fig. 3), considerare la possibile soluzione per il trasformatore. Ciò contribuisce a evitare un’accensione errata del FET a causa delle oscillazioni transitorie successive alle transizioni. Una transizione quasi inesistente può portare a oscillazioni transitorie legate alla capacità secondaria e all’induttanza di dispersione, oltre che produrre una tensione positiva dal trasformatore.
Riassumendo, i driver discreti consentono di ottenere notevoli risparmi. Circa 0,04 centesimi di dollari di investimento in componenti discreti equivalgono a un investimento oltre dieci volte superiore in circuiti integrati per driver. I driver discreti possono fornire correnti di comando superiori a 2 Amp, allegerendo il compito del integrato di controllo. Inoltre, eliminano le elevate correnti di commutazione dai circuiti integrati di controllo, ottimizzando le prestazioni di regolazione e rumore.
Nel prossimo incontro saranno discussi i semplici circuiti di comando di gate FET, analizzando le unità per raddrizzatori sincroni.
Per ulteriori informazioni su questa e altre soluzioni per gli alimentatori, visitare: http://www.ti.com/power-ca
Per contattare Robert Kollman: powertips@list.ti.com
Leggi tutti i corsi
Robert Kollman, Texas Instruments
Contenuti correlati
-
TI espande la sua gamma di FET GaN
Texas Instruments (TI) ha annunciato di aver ampliato la sua gamma di prodotti basati su tecnologia GaN con nuovi FET con gate driver integrati, tra cui i dispositivi LMG3622, LMG3624 e LMG3626, che permettono di raggiungere velocità...
-
2024: buone prospettive per i semiconduttori
Il mercato globale dei semiconduttori si trova in una fase di solida inversione di tendenza. Questa è l’opinione degli analisi di WSTS, che hanno rivisto al rialzo i dati relativi alla crescita del 2° trimestre 2023 rispetto...
-
Un pacchetto di driver Open-Source nativo Python per la strumentazione da Tektronix
Tektronix ha introdotto un pacchetto di driver per strumenti Python Open-Source. Questo pacchetto, chiamato tm_devices, è disponibile gratuitamente e offre un’esperienza utente nativa in Python per l’automazione degli strumenti. tm_devices è progettato per funzionare su un’ampia gamma...
-
Come ottimizzare i progetti HVAC per i veicoli HEV/EV
Una panoramica delle problematiche di progettazione correlate alle applicazioni elettroniche per HVAC e un’analisi del ruolo che hanno le prestazioni del controllo in tempo reale, la scalabilità e il costo nella risoluzione di tali problematiche Leggi l’articolo...
-
Ottimizzare elaborazione, rilevamento e controllo general purpose con le MCU Arm Cortex-MO+
Le MCU MSPM0 Arm Cortex-M0+ proposte da Texas Instruments offrono ai progettisti maggiori opzioni, più flessibilità di progettazione e una gamma più ampia di software e strumenti intuivi Leggi l’articolo completo su EO 512
-
Certificazione LEED Gold versione 4 per la nuova fabbrica di TI
Il nuovo stabilimento RFAB2 a Richardson di Texas Instruments (TI) ha ottenuto la certificazione LEED (Leadership in Energy and Environmental Design) Gold nella versione 4 (v4). Questa certificazione, che riconosce la sostenibilità di progettazione, costruzione e funzionamento...
-
Da Texas Intruments nuovi sensori a effetto Hall e soluzioni a shunt integrato
Texas Instruments ha realizzato dei nuovi sensori di corrente che consentono di semplificare i progetti, migliorando al tempo stesso l’accuratezza. Questi nuovi prodotti sono stati progettati per una vasta gamma di tensioni di modo comune e temperature...
-
Nuovo webinar per i sistemi di ricarica EV da Mouser Electronics e Texas Instruments
Mouser Electronics e Texas Instruments hanno realizzato un nuovo webinar dal titolo “Come semplificare i progetti dei sistemi di ricarica EV con i microcontrollori C2000″. Il webinar live gratuito si terrà alle 15:00 CET del 27 giugno...
-
congatec ha aggiunto i processori di TI al proprio portafoglio di soluzioni
congatec ha aggiunto i processori di Texas Instruments (TI) alla sua gamma di soluzioni Arm. L’azienda ha precisato che la prima piattaforma disponibile sarà conga-STDA4, un modulo COM in formato SMARC equipaggiata con un processore TDA4VM basato...
-
Data center più sostenibili grazie all’efficienza termica
Le innovazioni nella progettazione dei semiconduttori e nelle tecnologie dei package stanno migliorando l’’efficienza nei data center di pari passo con l’aumento delle esigenze di potenza Leggi l’articolo completo su EO 510