Alimentazione: alcuni suggerimenti (parte 40) – Correnti di modo comune in alimentazioni non isolate
Siete certi che le correnti di modo comune all’interno di un’alimentazione non isolata non possano generare interferenze elettromagnetiche (EMI)? In alimentazioni ad alta tensione, come quella di una lampadina a LED, potreste scoprire che non è possibile trascurare questa eventualità. A una semplice ispezione, non è ravvisabile alcuna differenza rispetto a un’alimentazione isolata. Sarà presente una capacità parassita distribuita a terra dai nodi commutazione che genererà correnti di modo comune.

Fig. 1 – Una capacità di soli 100 fF distribuita dal nodo di commutazione può creare un problema di emissioni elettromagnetiche
Nella figura 1 è riportato lo schema di un’alimentazione dei LED in cui si mostra come la capacità parassita sia la principale causa della corrente di modo comune di questo regolatore buck. Si tratta della capacità a terra distribuita dal nodo di commutazione. È sorprendente notare come tale capacità, pur essendo così ridotta, crei comunque un problema. Il limite CISPR alle emissioni condotte per dispositivi di classe B (attrezzature residenziali) consente un segnale di 46 dBuV (200 uV) in un’impedenza di sorgente da 50 ohm a 1 MHz. Di conseguenza, la corrente ammissibile diventa di soli 4 uA. Se il convertitore commuta con un’onda quadra di 200V picco-picco sul terminale di drain di Q2 a 100 kHz, la fondamentale sarà di circa 120 volt di picco. Poiché le armoniche decrescono proporzionalmente alla frequenza, si avranno approssimativamente 9 Vrms a 1 MHz. Questo valore può essere utilizzato per calcolare una capacità ammissibile a terra di circa 0,1 pF o 100 fF (oppure un’impedenza di 2 MOhm a 1 MHz), ovvero un quantitativo di capacità interamente realizzabile dal nodo. È inoltre presente la capacità distribuita a terra dalla parte rimanente della circuiteria, che fornisce un percorso di ritorno alle correnti di modo comune. Nella figura 1 questa capacità è indicata come C_Stray2.
In un’applicazione per illuminazione a LED non è presente alcun collegamento alla massa, ma sono disponibili solo i collegamenti caldo e neutro. Il filtraggio delle emissioni elettromagnetiche di modo comune diventa quindi problematico. Il circuito infatti presenta un’alta impedenza. Ciò può essere rappresentato da una sorgente di tensione a 9 Vrms in serie con una reattanza capacitiva di 2 MOhm, come mostrato nella figura 2. Di fatto, non esiste alcun modo praticabile per aumentare l’impedenza e ridurre quindi la corrente. Per contenere le emissioni a 1 MHz, sarà necessario ridurre la tensione o la capacità parassita. La tensione può essere diminuita attraverso il dithering o il controllo del tempo di salita. Il dithering varia la frequenza di esercizio di un’alimentazione da distribuire nello spettro.
Per una discussione sul dithering, è possibile consultare il Power Tip 8. Il controllo del tempo di salita rallenta la velocità di commutazione nell’alimentazione per limitare lo spettro delle alte frequenze, e risulta più appropriato per risolvere i problemi di interferenza elettromagnetica che insorgono sopra i 10 MHz. Ridurre la capacità parassita relativa al nodo di commutazione può essere semplice come minimizzare l’area di etching oppure può comportare la schermatura.
La capacità distribuita da questo nodo a un nodo delle linee di alimentazione ret0tificate non crea corrente di modo comune ed è pertanto possibile seppellirne la traccia in una scheda PWB multistrato, così da ridurre la maggior parte della capacità non desiderata. Ad ogni modo, non è possibile eliminare completamente tale capacità in quanto rimane quella relativa al drain del FET e all’induttore. Nella figura 2 sono riportati un grafico e i passaggi da eseguire per il calcolo dello spettro delle emissioni elettromagnetiche. Il primo passaggio consiste nel calcolare lo spettro della forma d’onda della tensione (in rosso).
A tal fine, occorre determinare la serie di Fourier della forma d’onda della tensione di drain, o più semplicemente calcolare la componente fondamentale e approssimare l’inviluppo a uno dividendo per il numero dell’armonica e la fondamentale. Un ulteriore aggiustamento viene eseguito ad alta frequenza (1/ (pi * tempo di salita)), come mostrato sopra 7 MHz. Il passaggio successivo comporta la divisione della tensione per la reattanza della capacità parassita. Cosa interessante, le emissioni a bassa frequenza rimangono piatte rispetto alla frequenza finché non si interseca il polo impostato dal tempo di risalita. Infine, vengono tracciati anche i limiti CISPR per la classe B. Con solo 0,1 pF di capacità parassita e un ingresso ad alta tensione, le emissioni sono prossime ai limiti consentiti.
I problemi relativi alle emissioni elettromagnetiche possono insorgere anche a frequenze più alte, a causa delle risonanze e delle emissioni radiate del circuito che vengono generate dalle risonanze del cablaggio di ingresso. Il filtraggio del modo comune può risolvere questi problemi perché è presente un sufficiente quantitativo di capacità in C_Stray2. A 20 pF, ad esempio, la relativa impedenza sarebbe inferiore a 2 KOhms a 5 MHz. Per ridurre le emissioni misurate, è possibile aggiungere tra il circuito e il resistore di test da 50 Ohm induttori di modo comune di sufficiente impedenza. Questo metodo può essere adottato anche per frequenze più alte.
Per riepilogare, in caso di alimentazioni non isolate ad alta tensione, è possibile che le emissioni EMI superino i limiti standard a causa di correnti di modo comune. In progettazioni a due fili, ovvero senza collegamento alla massa, le alte impedenze implicate rendono particolarmente difficile gestire tali emissioni. Il modo migliore per affrontare questo tipo di problema consiste nel ridurre al minimo la capacità parassita ed eseguire il dithering della frequenza di commutazione. A frequenze più alte, in corrispondenza delle quali l’impedenza della capacità distribuita dalla parte rimanente del circuito diventa piccola, è possibile utilizzare induttori di modo comune per ridurre sia le emissioni radiate, sia le emissioni condotte.
Nel prossimo incontro si discuterà di alimentazioni per la memoria DDR.
Per ulteriori informazioni su questa e altre soluzioni per gli alimentatori, visitare: http://www.ti.com/power-ca
Per contattare Robert Kollman: powertips@list.ti.com
Leggi tutti i corsi
Robert Kollman, Texas Instruments
Contenuti correlati
-
Ottimizzare elaborazione, rilevamento e controllo general purpose con le MCU Arm Cortex-MO+
Le MCU MSPM0 Arm Cortex-M0+ proposte da Texas Instruments offrono ai progettisti maggiori opzioni, più flessibilità di progettazione e una gamma più ampia di software e strumenti intuivi Leggi l’articolo completo su EO 512
-
Certificazione LEED Gold versione 4 per la nuova fabbrica di TI
Il nuovo stabilimento RFAB2 a Richardson di Texas Instruments (TI) ha ottenuto la certificazione LEED (Leadership in Energy and Environmental Design) Gold nella versione 4 (v4). Questa certificazione, che riconosce la sostenibilità di progettazione, costruzione e funzionamento...
-
Da Texas Intruments nuovi sensori a effetto Hall e soluzioni a shunt integrato
Texas Instruments ha realizzato dei nuovi sensori di corrente che consentono di semplificare i progetti, migliorando al tempo stesso l’accuratezza. Questi nuovi prodotti sono stati progettati per una vasta gamma di tensioni di modo comune e temperature...
-
Nuovo webinar per i sistemi di ricarica EV da Mouser Electronics e Texas Instruments
Mouser Electronics e Texas Instruments hanno realizzato un nuovo webinar dal titolo “Come semplificare i progetti dei sistemi di ricarica EV con i microcontrollori C2000″. Il webinar live gratuito si terrà alle 15:00 CET del 27 giugno...
-
congatec ha aggiunto i processori di TI al proprio portafoglio di soluzioni
congatec ha aggiunto i processori di Texas Instruments (TI) alla sua gamma di soluzioni Arm. L’azienda ha precisato che la prima piattaforma disponibile sarà conga-STDA4, un modulo COM in formato SMARC equipaggiata con un processore TDA4VM basato...
-
Data center più sostenibili grazie all’efficienza termica
Le innovazioni nella progettazione dei semiconduttori e nelle tecnologie dei package stanno migliorando l’’efficienza nei data center di pari passo con l’aumento delle esigenze di potenza Leggi l’articolo completo su EO 510
-
GaN per il controllo motore
Il silicio (Si) ha raggiunto i suoi limiti teorici nelle applicazioni di potenza, richiedendo così nuovi materiali che presentino una maggiore efficienza, una migliore gestione termica e, possibilmente, permettano di ridurre i costi e le dimensioni. Il...
-
Tecnologia di pulizia a ultrasuoni degli obiettivi: alcuni concetti fondamentali
Questo articolo tratterà la tecnologia di pulizia a ultrasuoni degli obiettivi, nota come ULC (Ultrasonic Lens Cleaning), e il modo in cui può contribuire a tramutare in realtà le applicazioni di pulizia automatica delle telecamere Leggi l’articolo...
-
Lauterbach annuncia il supporto dei processori AM6xAx di Texas Instruments
Lauterbach ha annunciato il supporto da parte dei suoi strumenti di sviluppo TRACE32 delle serie di SoC AM62Ax, AM68A e AM69A di Texas Instruments. Questo comprende il debug simultaneo dei core eterogenei della CPU e l’acquisizione non...
-
La progettazione per alte tensioni di modo comune in moduli di ingresso analogici
In questo articolo vengono esaminate le fonti di segnali ad alta tensione di modo comune e i tipici requisiti industriali. Inoltre, vengono introdotte le implementazioni di isolamento del segnale e di scaling del segnale. È possibile applicare l’isolamento...