Alimentazione: alcuni suggerimenti (parte 36) – I LED ad alta a tensione migliorano l’efficienza delle lampadine
La possibilità di sostituire le lampadine a incandescenza con lampade a LED è oggetto di crescente interesse. In genere, vengono collegati in serie alcuni LED (da cinque a nove) e un’alimentatore converte la tensione di rete in bassa tensione, di solito decine di volt, a correnti che vanno approssimativamente da 350 a 700 mA.
Ci sono diverse tecniche per garantire il corretto isolamento L’isolamento può essere eseguito a livello di alimentatore oppure garantita dal montaggio dei LED. In questo tipo di applicazioni a basso consumo, l’isolamento fisico dei LED rappresenta una scelta comune in quanto consente di utilizzare un’alimentazione non isolata e più economica.

Fig. 1 – Lo spazio da ricavare nell’attacco della lampadina lo spazio per un’alimentazione è ridotto
Nella figura 1 viene indicato un tipico esempio di replacemet della lampadina ad incandescenza con LED. Nell’esempio, l’alimentazione non è isolata. In altri termini, l’isolamento che protegge il consumatore dall’alta tensione è costruito nel package e non nell’alimentazione. Poiché lo spazio utilizzabile per l’alimentazione è ridotto, risulta difficile realizzare il package corretto Oltre a ciò, l’alimentatore essendo inscatolato risulta difficile garantire il corretto raffreddamento pertanto una corretta effiicenza deve essere garantita.
Nella figura 2 viene illustrato un circuito non isolato che alimenta i LED da un’alimentazione in CA a 120 volt. Contiene un raddrizzatore a ponte che alimenta uno stadio di potenza buck. Il buck rappresenta la “versione capovolta”, dove l’interruttore di alimentazione, Q2, è sul ritorno mentre il diodo di cattura, D3, è collegato alla sorgente. La corrente viene regolata attraverso un opportuno controllo Il circuito presenta alcuni inconvenienti che limitano l’efficienza, benché questa sia soddisfacente (80-90%). Quando l` alimentatore e` acceso la corrente di uscita convoglia sul mosfet ; quando il mosfet e` spento , la corrente di uscita fluisce attraverso il diodo di cattura.
Inoltre, la tensione del current sense , R8 e R10, è di circa 1 volt. Se poste a confronto con la tensione di un LED (compresa tra 15 e 30 volt), tutte e tre le cadute di tensione sono significative e limitano l’efficienza dell’alimentazione. Cosa più importante, queste perdite contribuiscono ad alzare la temperatura dell’assemblaggio della lampadina. La capacità di illuminazione di un LED diminuisce con il tempo e dipende strettamente dalla temperatura di esercizio.
Ad esempio, a 70 oC la produzione di luce da parte di un LED diminuisce del 30% in 50.000 ore, mentre a 80 oC si riduce in solo 30.000 ore. Il problema termico è anche più complesso perché i bulbi vengono installati in “lpackage” che tendono ad accumulare calore e non sconsentono un opportuno raffreddamento .
I produttori di LED hanno iniziato a realizzare soluzioni a più alta tensione collegando diversi LED in serie su un substrato comune. Questi prodotti a più alta tensione consentono di ridurre i costi o di migliorare l’efficienza dell’alimentazione. Accanto a tali soluzioni, un approccio più economico per ottimizzare l’alimentazione consiste nell’utilizzare una serie di rettificatori e un resistore di ballast.
In questo modo è possibile avere un PFC ragionevolmente buono, ma si ottiene un livello di efficienza piu basso perché una parte significativa della tensione di ingresso viene applicata al ballast, con perdite dell’ordine del 30-50% a carico della potenza del LED. L’opzione può essere utile in caso di applicazioni a consumo ridotto in cui le dimensioni ricoprono importanza fondamentale. Per valori di potenza più alti, tuttavia, la ridotta efficienza rende l’approccio impraticabile.
Nella figura 3 viene presentata un’altra alternativa usando un boost. La maggior parte della circuiteria utilizzata nei due approcci è sostanzialmente simile. Le perdite a carico del senso di corrente, del diodo e dell’interruttore, però, sono molto più piccole e i valori di efficienza raggiungono l’intervallo del 90-95%. Questo circuito, inoltre, presenta un buon fattore di potenza con misurazioni indicanti il 97%.
La figura 4 è una foto delle due alimentazioni illustrate negli schemi delle figure 2 e 3. Nonostante questa alimentazione produca pressappoco la stessa potenza di uscita, presenta alcune notevoli differenze che influiscono sulle relative dimensioni. L’induttore del boost è notevolmente più piccolo in quanto i requisiti per l’immagazzinamento di energia sono inferiori. Inoltre, il buck ha un resistore più grande rispetto al boost.
Nello specifico, si tratta di un resistore di carico fittizio (R20 nella Fig. 2) utilizzato per determinare il momento in cui si attiva il raddrizzatore a semiconduttore controllato (SCR). Il resistore è necessario perché i regolatori hanno un condensatore di soppressione delle interferenze elettromagnetiche (EMI) intorno al TRIAC che, senza alcun carico, presenta una tensione relativamente alta all’alimentazione. Ciò puo impattare la regolazione .
Per il boost, il resistore non è richiesto in quanto i LED sono collegati all’ingresso attraverso l’induttore del boost e gli forniscono un carico sufficiente. La parte inferiore della scheda non è mostrata, ma, come illustrato negli schemi, il buck ha un maggior numero di componenti . In conclusione, il boost fornisce la potenza ad una maggior efficienza per soluzione lampade a LED.
Per riepilogare, i LED a più alta tensione consentono di prolungare la durata delle lampadine a LED con attacco a vite riducendo le perdite e il conseguente innalzamento della temperatura. Questo obiettivo è raggiungibile sostituendo un buck con un boost per migliorare l’efficienza dell’alimentazione. Un boost determina circa la metà delle perdite associate a un regolatore buck. Inoltre, presenta un numero di componenti minore, un fattore di potenza migliore e dimensioni più ridotte. Oltre a ciò, la regolazione tramite TRIAC è più semplice.
Nel prossimo articolo si discuterà della corrente e delle tensioni a ondulazione connesse al condensatore di un’alimentazione offline.
Per ulteriori informazioni su questa e altre soluzioni per gli alimentatori, visitare: http://www.ti.com/power-ca
Per contattare Robert Kollman: powertips@list.ti.com
Robert Kollman, Texas Instruments
Contenuti correlati
-
Tecnologia GaN e MCU real-time di TI per il nuovo alimentatore per server di LITEON Technology
LITEON Technology ha scelto i FET GaN e i microcontroller real-time C2000 di Texas Instruments (TI) per il suo nuovo alimentatore per server (PSU) per il mercato Nordamericano. Questo PSU offre una densità di potenza di oltre...
-
Una nuova gamma di MCU con Arm Cortex-M0+ da Texas Instruments
Texas Instruments (TI) ha introdotto nella sua offerta di microcontrollori per uso generale una nuova serie di basata su Arm Cortex-M0+ dotata di un’ampia gamma di opzioni. Si tratta della famiglia di MCU MSPM0 che consente ai...
-
Progettazione delle catene di segnale per apparecchiature diagnostiche portatili
In questo articolo verranno illustrate due tipologie di catena di segnale utilizzate nelle apparecchiature diagnostiche portatili, ovvero l’amplificazione degli acidi nucleici (NAAT – Nucleic Acid Amplification Test) di tipo elettrochimico e di tipo ottico Leggi l’articolo completo...
-
Come creare un’esperienza audio sempre più coinvolgente nelle applicazioni automotive
L’impiego di altoparlanti a maggiore impedenza e l’implementazione del controllo di Classe H possono contribuire a sviluppare un sistema audio di peso inferiore, con tutti i vantaggi che ciò comporta Leggi l’articolo completo su EO 508
-
Guida tecnica ai convertitori dati
La conversione dei dati è una funzione essenziale che collega il mondo analogico a quello digitale. La conversione da analogico a digitale e da digitale ad analogico è presente nella maggior parte dei sistemi embedded. Dai sensori...
-
Sviluppo dell’intelligenza e elettrificazione per TI a embedded world 2023
A embedded world 2023 Texas Instruments (TI) presenterà le innovazioni nel campo dell’elaborazione e dell’elettrificazione embedded, compresi i nuovi microcontroller (MCU) e processori basati su Arm Cortex, nonché ulteriori tecnologie integrate in applicazioni per sistemi avanzati di...
-
Nuova fabbrica di TI nello Utah
Texas Instruments (TI) realizzerà una nuova fabbrica per wafer da 300 millimetri a Lehi, nello Utah. L’investimento previsto è di 11 miliardi di dollari e il nuovo impianto contribuirà a migliorare le economie di scala dell’azienda. La...
-
Webinar sull’alimentazione medicale da Mouser Electronics e TRACO Power
Martedì 7 marzo 2023, alle 15:00 CET, si terrà “How to power your medical application”, un webinar live gratuito di Mouser Electronics e TRACO Power dedicato all’alimentazione delle applicazioni per il settore medicale Mark Patrick, Direttore del...
-
Produzione industriale di nuova generazione con l’IIoT
La versione industriale dell’Internet of Things trasferisce i vantaggi di Industria 4.0 nel settore manifatturiero Leggi l’articolo completo su Embedded 87
-
Monitoraggio dello stato dei satelliti mediante amplificatori di rilevamento della corrente
Gli amplificatori di rilevamento della corrente costituiscono un elemento fondamentale di numerosi sistemi di monitoraggio dei satelliti che permettono di capire il loro comportamento dalla Terra Leggi l’articolo completo su EO 507